Evaluation of Biomaterials for Bladder Augmentation using Cystometric Analyses in Various Rodent Models

نویسندگان

  • Duong D. Tu
  • Abhishek Seth
  • Eun Seok Gil
  • David L. Kaplan
  • Joshua R. Mauney
  • Carlos R. Estrada
چکیده

Renal function and continence of urine are critically dependent on the proper function of the urinary bladder, which stores urine at low pressure and expels it with a precisely orchestrated contraction. A number of congenital and acquired urological anomalies including posterior urethral valves, benign prostatic hyperplasia, and neurogenic bladder secondary to spina bifida/spinal cord injury can result in pathologic tissue remodeling leading to impaired compliance and reduced capacity(1). Functional or anatomical obstruction of the urinary tract is frequently associated with these conditions, and can lead to urinary incontinence and kidney damage from increased storage and voiding pressures(2). Surgical implantation of gastrointestinal segments to expand organ capacity and reduce intravesical pressures represents the primary surgical treatment option for these disorders when medical management fails(3). However, this approach is hampered by the limitation of available donor tissue, and is associated with significant complications including chronic urinary tract infection, metabolic perturbation, urinary stone formation, and secondary malignancy(4,5). Current research in bladder tissue engineering is heavily focused on identifying biomaterial configurations which can support regeneration of tissues at defect sites. Conventional 3-D scaffolds derived from natural and synthetic polymers such as small intestinal submucosa and poly-glycolic acid have shown some short-term success in supporting urothelial and smooth muscle regeneration as well as facilitating increased organ storage capacity in both animal models and in the clinic(6,7). However, deficiencies in scaffold mechanical integrity and biocompatibility often result in deleterious fibrosis(8), graft contracture(9), and calcification(10), thus increasing the risk of implant failure and need for secondary surgical procedures. In addition, restoration of normal voiding characteristics utilizing standard biomaterial constructs for augmentation cystoplasty has yet to be achieved, and therefore research and development of novel matrices which can fulfill this role is needed. In order to successfully develop and evaluate optimal biomaterials for clinical bladder augmentation, efficacy research must first be performed in standardized animal models using detailed surgical methods and functional outcome assessments. We have previously reported the use of a bladder augmentation model in mice to determine the potential of silk fibroin-based scaffolds to mediate tissue regeneration and functional voiding characteristics.(11,12) Cystometric analyses of this model have shown that variations in structural and mechanical implant properties can influence the resulting urodynamic features of the tissue engineered bladders(11,12). Positive correlations between the degree of matrix-mediated tissue regeneration determined histologically and functional compliance and capacity evaluated by cystometry were demonstrated in this model(11,12). These results therefore suggest that functional evaluations of biomaterial configurations in rodent bladder augmentation systems may be a useful format for assessing scaffold properties and establishing in vivo feasibility prior to large animal studies and clinical deployment. In the current study, we will present various surgical stages of bladder augmentation in both mice and rats using silk scaffolds and demonstrate techniques for awake and anesthetized cystometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renal capsule for augmentation cystoplasty in canine model: a favorable biomaterial?

PURPOSE To evaluate effectiveness of canine renal capsule for augmentation cystoplasty. MATERIALS AND METHODS Ten adult dogs participated in this study. After induction of anesthesia each animal underwent bed side urodynamic study, bladder capacity and bladder pressure was recorded. Then via mid line incision abdominal cavity was entered, right kidney was identified and its capsule was dissec...

متن کامل

RE: Efficacy of botulinum toxin type A 100 units versus 200 units for treatment of refractory idiopathic overactive bladder

We read with great interest in the article “Efficacy of botulinum toxin type A 100 Units versus 200 units for treatment of refractory idiopathic overactive bladder”. Osama Abdelwahab, et al. (1) nicely presented the treatment outcomes in this well conducted randomized controlled study. Lack of voiding diary is one of the weak points of the article. Number of incontinence episode or functional b...

متن کامل

Voiding pattern analysis as a surrogate for cystometric evaluation in uroplakin II knockout mice.

PURPOSE Previous study has shown that the absence of uroplakin II can cause urinary tract dysfunction, including vesicoureteral reflux and renal abnormalities, as well as micturition pattern changes. We developed a simple surrogate measure of bladder function using ultraviolet visualization of urinary voiding patterns in a uroplakin II knockout mouse animal model. MATERIALS AND METHODS Three ...

متن کامل

Regenerative Medicine Strategies for Treating Neurogenic Bladder

Neurogenic bladder is a general term encompassing various neurologic dysfunctions of the bladder and the external urethral sphincter. These can be caused by damage or disease. Therapeutic management options can be conservative, minimally invasive, or surgical. The current standard for surgical management is bladder augmentation using intestinal segments. However, because intestinal tissue posse...

متن کامل

Regenerative medicine strategies for treatment of neurogenic bladder.

Neurogenic bladder is a general term encompassing various neurologic dysfunctions in the bladder and external urethral sphincter caused by damage or disease. Therapeutic management options fall into the categories of conservative, minimally invasive or surgical. The current standard for surgical management is bladder augmentation using intestinal segments. However, because intestinal tissue pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2012